Gang Reduction and Youth Development

Yifan Li, Jiazhong Mei, Aviva Prins, and Qinyi Zeng

Introduction

Gang Reduction and Youth Development (GRYD)

Questionnaire: 56 questions

- (1-5) "I get very angry and 'lose my temper'."
- (1-5) "It is okay to beat people up if they hit me first."
- (T/F) "The police treat people fairly."

Goals

To investigate the changes in time and internal spatial relationships in our dataset

- Dynamical system
- Dimensionality reduction

www.lagryd.org/summer-night-lights

Dynamical System

Points on manifold :

 $x_t \in \mathcal{M}$

Dynamics of the system:

$$x_{t+1} = f(x_t)$$

Dynamical System and Koopman Operator

Look at the space of vector-valued functions: $\{g : \mathcal{M} \to \mathbb{R}^m\}$

Koopman Operator Theory:

$$\mathcal{K}(g(x)) = g(f(x))$$

 \mathcal{K} is a linear, infinite-dimensional operator

Dynamical System and Koopman Operator

Look at the space of vector-valued functions: $\{g : \mathcal{M} \to \mathbb{R}^m\}$

 $\begin{bmatrix} 1\\ 0.25\\ 0.75\\ \vdots\\ 0 \end{bmatrix}$ Koopman Operator Theory: $\mathcal{K}(g(x)) = g(f(x))$ \mathcal{K} is a linear, infinite-dimensional

operator

Dynamic Mode Decomposition (DMD)

DMD Algorithm

Input: initial matrix \mathcal{Q}_0 , final matrix \mathcal{Q}_1 , rank r

- 1. Compute rank-r SVD of $Q_0 = U\Sigma V^{\top}$;
- 2. Define $\tilde{A} = U^{\top} Y V \Sigma^{-1}$;
- 3. Compute the eigenvalues and eigenvectors of \tilde{A} : $\{\lambda_i\}_{i=1}^r$ and $\{w_i\}_{i=1}^r$
- 4. The eigenvalues and eigenvectors of A are given by $\{\lambda_i\}_{i=1}^r$ and $\{\phi_i = YV\Sigma^{-1}w_i\}_{i=1}^r$
- Output: DMD eigenvalues
 - real part: growth/decay
 - imaginary part: frequency

- eigenvectors
 - select by largest eigenvalue

DMD on Constructed Dataset

GRYD Risk Factors

DMD by Program

Question 25: "It is okay to beat people up if they hit me first." Question 26: "It is okay to beat people up if I do it to stand up for myself."

- largest log eigenvalue -0.274 < 0
 - \circ lower than Q_0 to Q_1
- dominated by largest few eigenvalues
- no apparent frequency

Question 15: "Did you start hanging out with a new group of friends?" Question 52: "Hit someone with the idea of hurting him/her?

Prediction

Dynamic Mode Decomposition

Supervised Machine Learning

Prediction using DMD

Dimensionality Reduction

Goal:

Given a matrix $\mathbf{Q} \in \mathbb{R}^{n \times m}$, find $\mathbf{P} \in \mathbb{R}^{n \times m_0}$ and $\mathbf{f} : \mathbb{R}^{m_0} \to \mathbb{R}^m$ such that \mathbf{f} is approximately isometric.

Isometry: $d(p_i, p_j) = d(f(p_i), f(p_j))$

Landmark Isomap

1. Compute \mathbf{P}_0

3D Swiss Roll

Landmark Isomap

2. Construct Functional Constraints:

Heat Kernel Signature (HKS)

- Dissipation of heat from the point onto the rest of the shape over time.
- Short time: highly local shape features
- Long time: summaries of the shape in large neighborhoods
- Match between points by comparing their signatures at different time intervals

HKS on Swiss Roll

HKS on GRYD data

Optimization

3. Solve
$$\arg\min_{C_k} \frac{1}{2} \|C_k F_Q - F_{P_k}\|_F^2 + \frac{1}{2} \|C_k L_Q - L_{P_k} C_k\|_F^2$$

Procedure:

- Perform SVD on ${\it F}_Q$ and find ${\it U}_Q$.
- Transform F_Q, F_P, L_Q and L_P .

$$\circ \quad \text{eg.} \quad \hat{F_Q} = U_Q^T F_Q, \\ \hat{L_P} = U_Q^T L_P U_Q$$

- Run Optimization.
- Reconstruct C_k

Optimization

Find a New Embedding

- 4. Extract f^{-1} and \mathbf{P}_{k+1} from \mathbf{C}_k
 - Apply delta function
- 5. Go back to step 2 and iterate

Problems

- Optimization sticks at local minimum
- HKS does not capture enough features.

Future Work

Why do we see the change that we see?

- Transient growth
- Resiliency of questions
- Dimension reduction

Acknowledgements

- Dr. Bertozzi
- Dr. Brantingham
- Dr. Azencot
- Dr. Lindstrom
- Dr. Arnold
- Melanie Sonsteng