Human-in-the-Loop Resource Allocation in Restless Multi-Armed Bandits and Their Application to Public Health Interventions

Aviva Prins

Motivating Example

Motivating Example

Restless MAB Model

Choose k out of N people at each timestep t such that adherence is maximized

Restless MAB Model

- × ? ✓ : State Space
 - Section Space : Action Space
- P(s, s', a): Transition Matrix
- r(s) = s : Reward Function

Forward Threshold Optimal

Threshold Whittle Algorithm

Histogram of actions N = 500, k = 25

Human-in-the-Loop

Health worker applies a frequency constraint:

Ensure is called at least every *v* days

Simulated Results

Histogram of Adherence N = 500, k = 25no constraints

Simulated Results

Histogram of Adherence N = 500, k = 25, m = 500

call at least every v = 40 days

Simulated Results on Real Patient Data Histogram of Adherence N = 500, k = 25no constraints

Conclusion

Our human-in-the-loop model is very effective:

- More diverse allocation of resources
- Elicits health worker feedback
- Versatile

Thank you

- CRCS Summer Fellowship
- Prof. Milind Tambe
- Dr. Rediet Abebe
- Aditya Mate
- Jackson Killian